JOTACTIC 捷策動能

AUTOSAR TOTAL SOLUTIONS

Green Hills INTEGRITY RTOS

The flagship of Green Hills Software operating systems—the INTEGRITY RTOS—is built around a partitioning architecture that enables embedded developers to ensure their applications meet the highest possible requirements for security, reliability, and performance. With its leadership pedigree underscored by a range of certifications, INTEGRITY sets the standard for RTOS safety, security, and reliability.

Safe, Secure, Reliable

INTEGRITY uses hardware memory protection to isolate and protect embedded applications. Secure partitions guarantee each task the resources it needs to run correctly and fully protect the operating system and user tasks from errant and malicious code—including denial-of-service attacks, worms, and Trojan horses.

Unlike other memory-protected operating systems, INTEGRITY never sacrifices real-time performance for security and protection.

Platforms & Middleware

To help developers jumpstart product development, Green Hills Software offers an extensive array of middleware integrated and validated for INTEGRITY, including:

  • FFS, FAT, NFS, and journaling file systems
  • IPv4/IPv6 host and routing networking stacks
  • FIPS 140-2 certified Suite B enabled embedded encryption library
  • Advanced Layer 3 routing protocols
  • Web services: HTTPS, SOAP, AJAX, JSON, XML
  • Wi-Fi support: WPA2, Bluetooth, 3G
  • USB host stack, device stack and class drivers
  • 2d, 3D, and OpenGL graphics

Each of these middleware packages has been pre- integrated and tested to run seamlessly with and take full advantage of INTEGRITY’s advanced RTOS capabilities. For selected industries, Green Hills Software offers platforms that provide an completely integrated ecosystem. Each platform includes the INTEGRITY RTOS as well as development tools, industry-specific middleware, reference hardware, and documentation.

Reliability Architecture

The INTEGRITY RTOS separation kernel protects against damage from errant or malicious code by preventing processes from writing beyond assigned memory regions. In addition, INTEGRITY’s partitions prevent unintended access to data from outside the partition where the data resides.

Traditional operating systems can crash, lock up, or execute uncontrollably, resulting in costly consequences—a lost satellite, a stalled car, a failing medical monitor. INTEGRITY protects both critical applications and itself from the malfunctions that can lead to failures by providing guaranteed system resources that ensure CPU time and memory resources will always be available to individual processes, no matter what any other process attempts to do.

Malicious or unintended events can deny access to system resources and keep system processes from running as intended. To prevent these denial-of-service attacks, INTEGRITY can assign fixed budgets of CPU time and memory to each process. By guaranteeing a time window for a particular process, these fixed budgets also preserve the integrity of other processes by preventing running tasks from executing beyond their window.

Advanced Multicore Support

The modern architecture of INTEGRITY is well suited for multicore processors targeting embedded systems. INTEGRITY provides complete Asymmetrical Multiprocessing (AMP) and Symmetrical Multiprocessing (SMP) support that is optimized for embedded and real-time use. Embedded system designers can select the multiprocessing architecture that is right for the task. When coupled with the advanced multicore debugging features found in the Green Hills MULTI tool suite, developers will reduce their time-to-market while increasing system performance and reliability.

INTEGRITY Multivisor Secure Virtualization Architecture

INTEGRITY­ Multivisor is a robust and portable virtualization infrastructure with an architecture flexible enough to handle the wide variety of hardware capabilities available across today’s microprocessors. ISV maximizes the use of available hardware virtualization facilities while minimizing or eliminating modifications to guest operating systems.

Many silicon manufacturers now include hardware assisted virtualization technology—such as ARM Virtualization Extensions (VE), Intel VT-x and VT-d, and virtualization-enabled Power Architecture. For these architectures, INTEGRITY Multivisor supports high performance “full virtualization” where no changes to the guest operating system are needed. Where device access must be shared between guests and/or applications, it’s easy to add applications that coordinate access to the hardware.